## Western Alaska Salmon Stock Identification Program

## Technical Document: ${ }^{1}$

Title: Investigation of temporal variation in sockeye and chum salmon baselines
Authors: J. Jasper, C. Habicht, W. Templin
Date: March 26, 2009

## Introduction

During the initial review of the Western Alaska Salmon Stock Identification Program (WASSIP) study plan, the Technical Committee (TC) commented on the potential for fluctuation in allele frequencies (as a result of natural processes) to have an effect on the utility of the baselines for mixed stock analysis (MSA; Technical Document 1). The recommendation by the TC was "At a minimum, [the baselines] should be evaluated to determine 1) the magnitude of allele frequency change over time; and 2) the relative magnitude of temporal and geographic differences in allele frequency."

There are two forces capable of changing allele frequencies over time: drift and selection. Traditionally, drift has been the primary force studied because most loci were thought to be neutral to selection. However, for some loci, selection may also play an important role (see Technical Document 5). This distinction is important because it will guide how we look for changes in allele frequencies through time. Drift changes allele frequencies at a rate inverse to the effective population size and has the same force on all loci. On the other hand, selection could change allele frequencies quickly even if the effective population sizes are large.

In the preliminary baselines destined for use in the WASSIP analysis for both sockeye salmon and chum salmon, numerous spawning locations were represented by collections taken in two or

[^0]more years during approximately the same calendar times. For sockeye salmon, the baseline used in this analysis contained 127 repeat collections (that contained at least 30 fish each) representing 62 putative populations (subset of the baseline in Technical Document 5). For chum salmon the baseline contained 53 repeat collections representing 26 putative populations (Technical Document 4). We used these repeat collections to investigate the magnitude of temporal variation in allele frequencies. The baselines will continue to be updated with additional collections and additional loci through the spring and summer of 2010 and the analyses presented here (Version 1) will need to be repeated on the final datasets.

## Methods

Variation in allele frequency over time within and between populations was measured in three ways: 1) a hierarchical log-likelihood ratio test (modified from Sokal and Rohlf 1995), 2) a hierarchical Analysis of Variance (Weir 1990), and 3) a graphical representation of pair-wise $F_{S T}$ (Weir and Cockerham 1984). Separate analyses were done for each species.

Placing the log-likelihood ratio statistic into a hierarchical framework enables assessment of the relative effect of allele frequency differences within and between populations from samples taken in more than one year. However, interpretation of p-values calculated on these statistics is not straight-forward since the null hypothesis of homogeneity is typically violated due to genetic drift (Waples and Teel 1989). Log-likelihood ratio statistics were calculated using S-plus (TIBCO Software Inc., Palo Alto, CA).

Perhaps a more appropriate approach is a three-level Analysis of Variance (ANOVA) treating the temporal samples as sub-populations based on the method described in Weir (1990). Use of this method allows the quantification of the sources of total allelic variation and permits the calculation of the between-collection component of variance and the assessment of its magnitude relative to the between-population component of variance. This analysis was conducted using the software package GDA (Lewis and Zaykin 2001).

Pairwise $F_{S T}$ values were calculated between all temporal collections using GDA. Patterns of variation within and between populations were visualized with two methods. First, the pairwise $F_{S T}$ matrix was plotted as an image plot in the statistical package R (R Development Core Team 2008). The resulting plot is a grid where each "pixel" is a comparison between a pair of collections. A darker color indicates a larger $F_{S T}$ between collections and, thus, larger differences between the collections. The information in the rows is exactly the same as that contained in the columns. Pixels directly on the diagonal are comparisons of collections with themselves and therefore represent zero, whereas pixels just off the diagonal indicate comparisons between collections from the same location in different years. Ideally, the pixels that indicate temporal comparisons would be white while and all others would be dark. This would indicate nicely that differences between temporal collections were small relative to differences between populations.

Second, the pairwise $F_{S T}$ matrix was used as a dissimilarity matrix in the unweighted pair group method with arithmetic mean (UPGMA) algorithm to draw a tree. This allowed for grouping of collections into successive clusters based on the magnitude of the $F_{S T}$ values between pairs or groups of collections. The expectation was that collections from the same population would have lower $F_{S T}$ between them than they would with any collection from another population and would therefore be combined at the lowest level of the tree.

## Results

## Sockeye salmon

In the range-wide baseline for sockeye salmon 62 of the 375 populations represented had collections taken in more than a single year which had been assayed for genotypes (Table 1). These populations were centered in the Bristol Bay and Kuskokwim areas.

Log-likelihood ratio statistics, in a hierarchical framework, indicated that only seven of the 62 repeat collections showed heterogeneity within populations among years after adjusting for

WASSIP Technical Document 2: Temporal variation in baselines
multiple tests (Table 2). For each region and overall regions, significant heterogeneity among populations was detected. The seven populations that showed significant heterogeneity among years after adjusting for multiple tests included: Elovka River, Goodnews River - Middle Fork, West Fork, Hewitt Lake, Larson Lake, Birch Creek, and Tatsamenie Lake. An additional four populations had significant deviations before adjusting for multiple tests: Goodnews River North Fork, Idavain Creek, Fish Creek, and Skilak Lake. The three-level ANOVA indicated that the variation among populations was 41 times the amount of variation among repeat collections across years within populations (between collections, $\sigma_{\mathrm{S}}=0.038$; between populations, $\sigma_{\mathrm{P}}=$ 1.552; ratio 41.239).

Pairwise $F_{S T}$ values showed that generally the variation among collections within populations (collections made across years) was smaller than the variation among populations (Figures 1 and 2). In the color-coded pair-wise $F_{S T}$ plots (Figure 1), a white diagonal line through a field of reds and pinks is apparent which visually demonstrates the among-population variation relative the within-population variation.

In the UPGMA tree (Figure 2), most temporal collections paired together. The temporal collections within populations that did not group included: Elovka River from Russia where one collection paired with the other Russian population, but the second temporal collection paired with Big Lake in Cook Inlet; Spink Creek which paired with the geographic proximate population of Byers Lake in Cook Inlet; Clark River which is closely related to other Chignik drainage collections; Kogrukluk and Kanektok rivers, which are both from the Kuskokwim River drainage; and Lower and Upper Talarik creeks which are next to each other and drain into Iliamna Lake.

## Chum salmon

In the range-wide baseline for chum salmon, 26 of the 153 populations represented had collections taken in more than a single year which had been assayed for genotypes (Table 3). These sets of collections were heavily weighted toward Western Alaska (12 populations) and Washington and Idaho (7 populations).

WASSIP Technical Document 2: Temporal variation in baselines

Three of the 26 within-population log-likelihood ratio tests were significant at $\alpha=0.05$ after accounting for multiple tests (Table 4). These included Amur River, Snake River, and Lilliwaup River - Summer. One additional collection was significant before accounting for multiple tests (George River). These four significant results were enough to drive the significance of the total within-population log-likelihood ratio test (Table 4). Despite these significant differences among temporal collections within populations, the three-level ANOVA shows that the amongpopulation component of total allelic variation is 38.98 times greater than the among temporal collections within populations component (between collections, $\sigma_{S}=0.040$; between populations, $\sigma_{P}=1.541$; ratio 38.983).

The plot of pairwise $F_{S T}$ values (Figure 3) visually shows that the differences between temporal collections within populations are in general relatively small. However, the large white patch in the lower, left-hand side of Figure 3 shows the lack of variation among the Western Alaska populations and the smaller white patch in the upper, right-hand side show similar lack of variation among populations within Washington and Idaho. These white patches demonstrate the lack of differentiation among populations within these regions relative to the differences between temporal collections within populations, which is problematic for distinguishing these populations in mixed stock analyses.

The UPGMA tree of pairwise $F_{S T}$ values provides another visual way to see that there is little among-population variation relative to the variations among temporal collections within populations in the Western Alaska and the Washington/Idaho regions (Figure 4). Outside of these regions the temporal collections for populations pair together. Within these regions, some of the temporal collections pair together within populations. The pairing of some temporal collections of populations provides some hope that with additional targeted markers, there is potential to increase resolution among populations.

## Conclusions

Other baselines containing relative temporal variation higher than observed in these baselines have been used successfully for MSA applications. For example, Beacham et al. (2005b) used a microsatellite baseline for sockeye salmon from British Columbia that yielded high resolution in MSA applications. In their baseline, they found variation among populations was approximately 13 times greater than annual variation. In our baseline, the variation among populations relative to the annual variation was much higher in both the chum and sockeye salmon baselines; 39 times higher for chum salmon and 41 times higher for sockeye salmon. In other words, the proportion of the total variation accounted for by variation among years was much smaller in our baselines than in the baseline used successfully for MSA by Beacham et al. (2005b).

The ratio of variation within populations (among years) relative to the variation among populations was similar or lower in our baseline than has been reported in other baselines covering similar geographic distributions (Pacific rim). The variation among populations was 13 times higher and 42 times higher than the variation among populations for chum salmon and sockeye salmon, respectively, from throughout the Pacific rim (Beacham et al. 2006; Beacham et al. 2009). The sockeye salmon baseline was determined to be useful for Pacific rim-wide MSA analyses (Beacham et al. 2005a).

The partitioning of variation within and between populations across baselines will be affected by three sources. First, the populations that are included in the baseline will have an effect. For example, if baseline collections represent higher proportions of populations from areas with more variation, then the proportion of variation accounted for by differences among years is going to be relatively smaller and vice-versa. Second, the number of years separating temporal collections will also have an effect on the among-year variation that is measured. In these species, samples separated by 3 to 5 years will generally measure intra-generational variation, while samples separated by longer periods will measure inter-generational variation. Third, differences in the characteristics of the marker type could affect the measurement of this ratio. For instance, Beacham et al. (2005a and 2009) used fewer microsatellite loci, but across all loci there were more alleles assayed than in the baselines used in this analysis.

One immediate concern that rises from this analysis is the lack of variation measured among populations from Western Alaska for chum salmon. The results presented here indicate that there is some signal for among-population differences, but that the signal is weak. This pattern is similar to the pattern seen earlier in sockeye salmon from the Meshik, Ugashik and Egegik drainages in Bristol Bay before the MHC locus was screened (Habicht et al. 2007). After the addition of the MHC loci to the baseline it was possible to segregate the populations and MSA simulations improved drastically. MHC appears to be a locus under selection (Technical Document 5), and the hope is that the new loci being developed for chum salmon based on cDNA and using Western Alaska populations as ascertainment (Technical Document 6) will provide loci that allow MSA to distinguish among populations in western Alaska.

In summary, temporal variation in allele frequencies within populations does not appear to be a major concern in these baselines. However, this analysis will be repeated when the full baseline sets are completed and many new temporal comparisons will be possible.

## Future Directions

## Sockeye salmon

1. Additional collections exist (many collected in 2009) that represent repeat temporal collections in the ADFG archive. Laboratory analysis of these collections has begun and will be used to expand the analysis of temporal variation.
2. Investigation of temporal variation at selected loci identified in Technical Document 5. For loci under selection, it will be important to look for Hardy-Weinberg disequilibrium as a sign of transition in the selected allele and then following up with new temporal collections to determine contemporary allele frequencies.
3. Investigation of the power of markers in development (Technical Document 6) to discriminate among populations.
4. Investigate the magnitude of intra- and inter-generational variation in allele frequencies in sockeye populations coastwide.

WASSIP Technical Document 2: Temporal variation in baselines

## Chum salmon

1. Additional collections exist (some collected in 2009) that represent repeat temporal collections in the ADFG archive. Laboratory analysis of these collections has begun and will be used to expand the analysis of temporal variation.
2. Investigation of within-year run timing variation as noted in several populations during the baseline evaluation (Technical Document 4).
3. Investigation of the power of markers in development (Technical Document 6) to discriminate among populations especially in Western Alaska and Bristol Bay.
4. Investigate the magnitude of intra- and inter-generational variation in allele frequencies in chum populations coastwide.

## Literature cited

Beaumont, M. A., and D. J. Balding. 2004. Identifying adaptive genetic divergence among populations from genome scans. Molecular Ecology 13(4):969-980.

Beacham, T. D., J. R. Candy, B. Mcintosh, C. MacConnachie, A. Tabata, K. Kaukinen, L. Deng, K. M. Miller, R. E. Withler, and N. Varnavskaya. 2005a. Estimation of stock composition and individual identification of sockeye salmon on a Pacific rim basis using microsatellite and major histocompatibility complex variation. Transactions of the American Fisheries Society 134:1124-1146.

Beacham T.D., B. McIntosh, and C. MacConnachie. 2005b. Population structure and stock identification of sockeye salmon (Oncorhynchus nerka) in coastal lakes in British Columbia, Canada. Canadian Journal of Zoology 83: 834-844.
Beacham. T. D., B. Mcintosh, C. MacConnachie, K. M. Miller, R. E. Withler, and N. Varnavskaya. 2006. Pacific rim population structure of sockeye salmon as determined from microsatellite analysis. Transactions of the American Fisheries Society 135:174187.

Beacham, T. D., J. R. Candy, K. D. Le, and M. Wetklo. 2009. Population structure of chum salmon (Oncorhynchus keta) across the Pacific Rim, determined from microsatellite analysis. Fishery Bulletin 107: 244-260.
Habicht, C., L. W. Seeb, and J. E. Seeb. 2007. Genetic and ecological divergence defines population structure of sockeye salmon populations returning to Bristol Bay, Alaska, and provides a tool for admixture analysis. Transactions of the American Fisheries Society 136:82-94,

Lewis, P.O. and D. Zaykin. 2001. Genetic data analysis: computer program for the analysis of allelic data. Version 1.0. URL http://lewis.eeb.uconn.edu/lewishome/software.html.
R Development Core Team (2008). R: A language and environment for statistical computing. R

WASSIP Technical Document 2: Temporal variation in baselines

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
Sokal, R.R. and F.J. Rohlf. 1995. Biometry. $3^{\text {rd }}$ Edition. Freeman, San Francisco, CA.
Waples, R. S., and D. J. Teel. 1990. Conservation genetics of Pacific salmon. I. Temporal changes in allele frequency. Conservation Biology. 4: 144-156.
Waples, R. S. 1990. Temporal changes of allele frequency in Pacific salmon - implications for mixed-stock fishery analysis. Canadian Journal of Fisheries and Aquatic Sciences 47(5):968-976.

Weir, B. S. 1990. Genetic data analysis. Sinauer Associates, Sunderland, Massachusetts.
Weir, B.S. and C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38. 1358-1370.

WASSIP Technical Document 2: Temporal variation in baselines

## Technical Committee review and comments

## Document 2: Investigation of temporal variation in sockeye and chum salmon baselines

Line 18: migration also can affect allele frequencies
23: drift might have the same 'force' on all loci but the consequences vary among loci due to chance
45: is this a G test?
59: FST refers to differences among geographic subpopulations; temporal F should be used for temporal comparisons
88-90: care should be used in applying a multiple testing adjustment for large datasets like this, as the adjusted critical P value can be so low that meaningful differences are obscured. If an explicit adjustment is made for multiple tests, it is preferable to also report results of the unadjusted tests so the reader can better evaluate how well results compare with null expectations.
176-177: actually, comparison of parents and offspring (~3-5 years apart) should produce the smallest genetic differences, while samples taken 1-2 years apart share no parents and should be relatively more divergent. See Waples 1990 J. Heredity.
[Unedited comments from "Panel comments October 2009.doc" related to Technical Document 2.]

Table 1. Collections of sockeye salmon sampled from the same location at approximately the same time in the calendar year but in multiple years organized by region used to examine within-population and among population genetic variability. Sample year and sample sizes are provided.

| Region | Population | Collection | Year | N |
| :---: | :---: | :---: | :---: | :---: |
| Western Kamchatka |  |  |  |  |
|  | Ozernaya River | Ozernaya River | 2000 | 50 |
|  |  | Ozernaya River | 2002 | 50 |
|  | Elovka | Elovka | 1994 | 69 |
|  |  | Elovka | 1995 | 40 |
| NW Bristol Bay - Yukon Kuskokwim |  |  |  |  |
|  | Andreafsky River | Andreafsky River weir | 2006 | 48 |
|  |  | Andreafsky River weir | 2008 | 47 |
|  | Necons River | Necons River | 2006 | 55 |
|  |  | Necons River | 2007 | 93 |
|  | Kogrukluk River | Kogrukluk River weir | 2001 | 95 |
|  |  | Kogrukluk River weir | 2007 | 48 |
|  | Kanektok River | Kanektok River weir | 2002 | 95 |
|  |  | Kanektok River weir | 2007 | 48 |
|  | Goodnews River - North Fork | Goodnews River - North Fork | 2002 | 95 |
|  |  | Goodnews River - North Fork | 2006 | 48 |
|  | Goodnews River - Middle Fork | Goodnews River weir - Middle Fork | 2007 | 47 |
|  |  | Goodnews River weir - Middle Fork | 2001 | 96 |
|  |  | Goodnews River weir - Middle Fork | 1991 | 48 |
|  | Togiak Lake | Togiak Lake, Sunday Creek | 2000 | 95 |
|  |  | Togiak Tower | 2006 | 95 |
|  | Silver Horn | Silver Horn beaches | 2008 | 124 |
|  |  | Silver Horn beaches | 2007 | 95 |
|  | Hardluck Bay | Hardluck Bay | 2008 | 157 |
|  |  | Hardluck Bay beaches | 2007 | 95 |
|  | Little Togiak Lake | A Beach - Little Togiak Lake | 2004 | 65 |
|  |  | A Beach - Little Togiak Lake | 2005 | 30 |
|  | Pick Creek | Pick Creek | 2001 | 95 |

WASSIP Technical Document 2: Temporal variation in baselines

| Region | Population | Collection | Year | N |
| :--- | :--- | :--- | ---: | ---: |
| Eastern Bristol Bay |  | Pick Creek | 2008 | 93 |
|  | Tomkok Creek | Tomkok Creek | 2000 | 95 |
|  |  | Tomkok Creek | 2002 | 48 |
|  | Tommy Creek | Tommy Creek | 2002 | 48 |
|  |  | Copper River | Tommy River | 2000 |

WASSIP Technical Document 2: Temporal variation in baselines


WASSIP Technical Document 2: Temporal variation in baselines

| Region | Population | Collection | Year | N |
| :---: | :---: | :---: | :---: | :---: |
|  | Stephan Lake | Stephan - Susitina weir | 2007 | 95 |
|  |  | Stephan Lake | 1993 | 95 |
|  | Larson Lake | Larson Lake | 2006 | 94 |
|  |  | Larson Lake | 1993 | 95 |
|  | Birch Creek | Birch Creek | 2007 | 133 |
|  |  | Birch Creek | 1993 | 67 |
|  | Big Lake | Big Lake | 1992 | 95 |
|  |  | Fish Creek weir | 1994 | 94 |
|  |  | Fish Creek | 1993 | 95 |
|  | Williwaw Creek | Williwaw Creek | 2006 | 39 |
|  |  | Williwaw Creek | 2007 | 69 |
|  | Moose Creek | Moose Creek Kenai | 1994 | 95 |
|  |  | Moose Creek, Kenai R. | 1993 | 47 |
|  | Ptarmigan Creek | Ptarmigan Creek | 1992 | 47 |
|  |  | Ptarmigan Creek | 1993 | 95 |
|  | Tern Lake | Tern Lake | 1992 | 48 |
|  |  | Tern Lake | 1993 | 95 |
|  | Skilak Lake | Skilak Lake | 1995 | 48 |
|  |  | Skilak Lake | 1992 | 96 |
|  | Eshamy Creek | Eshamy Creek | 2008 | 95 |
|  |  | Eshamy Lake | 1991 | 96 |
| Eastern GOA |  |  |  |  |
|  | Windfall Lake | Windfall Lake | 2003 | 48 |
|  |  | Windfall Lake | 2007 | 48 |
|  | Nahlin River | Nahlin River | 2003 | 50 |
|  |  | Nahlin River | 2007 | 34 |
|  | Tatsamenie Lake | Tatsamenie | 1992 | 95 |
|  |  | Tatsamenie Lake | 2005 | 95 |
|  | Iskut River | Iskut River | 2002 | 31 |
|  |  | Iskut River | 1985 | 30 |
|  | McDonald Lake | McDonald Lake - Hatchery Creek | 2007 | 93 |
|  |  | Hatchery Creek - McDonald Lake | 2001 | 96 |

WASSIP Technical Document 2: Temporal variation in baselines

| Region | Population | Collection | Year | N |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Hatchery Creek - McDonald Lake | 2003 | 96 |
|  | Heckman Lake | Heckman Lake | 2004 | 95 |
|  |  | Heckman Lake - Naha River | 2007 | 95 |
|  | Red Bay Lake | Red Bay Lake | 2004 | 95 |
|  |  | Red Bay Lake | 1992 | 50 |
|  | Sweetwater Lake | Hatchery Creek - Sweetwater | 2007 | 95 |
|  |  | Hatchery Creek - Sweetwater Lake | 2003 | 47 |
|  | Meziadin Lake | Meziadin Beach | 2006 | 95 |
|  |  | Meziadin Lake | 2001 | 95 |

WASSIP Technical Document 2: Temporal variation in baselines

Table 2. Hierarchical test for temporal variation in sockeye salmon using the log-likelihood ratio test of population homogeneity based on 44 SNP loci. Comparisons are limited to populations where samples from multiple years exist in the current coastwide SNP baseline. Collections years are incorporated at the end of the population names.

| Region | Populations | p-value |  | G | DF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Western Kamchatka |  |  |  |  |  |
| Between Pops |  | 0.000 | ** | 565.0 | 54 |
| Within Pops |  | 0.000 | ** | 392.8 | 108 |
|  | Ozernaya.00.02 | 0.080 |  | 69.2 | 54 |
|  | Elovka.94.95 | 0.000 | ** | 323.6 | 54 |
| NW Bristol Bay-Yukon Kuskokwim |  |  |  |  |  |
|  |  |  |  |  |  |
| Between Pops |  | 0.000 | ** | 10100.0 | 540 |
| Within Pops |  | 0.041 | * | 712.1 | 648 |
|  | Andreafsky.06.08 | 0.803 |  | 45.0 | 54 |
|  | Necons.06.07 | 0.877 |  | 42.3 | 54 |
|  | Kogrukluk.01.07 | 0.242 |  | 60.9 | 54 |
|  | Kanektok.02.07 | 0.258 |  | 60.3 | 54 |
|  | GoodnewsNorth.02.06 | 0.003 | ** | 87.8 | 54 |
|  | GoodnewsMid.07.01.91 | 0.000 | ** | 181.2 | 108 |
|  | TogiakLake.00.06 | 0.424 |  | 55.4 | 54 |
|  | SilverHorn.08.07 | 0.427 |  | 55.3 | 54 |
|  | Hardluck.08.07 | 0.950 |  | 38.1 | 54 |
|  | LittleTogiak.04.05 | 0.964 |  | 36.9 | 54 |
|  | Pick.01.08 | 0.662 |  | 49.1 | 54 |
| Eastern Bristol Bay |  |  |  |  |  |
| Between Pops |  | 0.000 | ** | 6159.0 | 594 |
| Within Pops |  | 0.441 |  | 652.7 | 648 |
|  | Tomkok.00.02 | 0.925 |  | 39.8 | 54 |
|  | Tommy. 02.00 | 0.006 |  | 83.8 | 54 |
|  | Copper.99.00 | 0.722 |  | 47.5 | 54 |
|  | Gibralter.99.00 | 0.108 |  | 67.1 | 54 |
|  | UpTalarik.04.06 | 0.031 |  | 75.1 | 54 |
|  | LowTalarik.01.00 | 0.874 |  | 42.4 | 54 |
|  | Moraine.04.01 | 0.956 |  | 37.6 | 54 |
|  | Battle.04.01 | 0.896 |  | 41.4 | 54 |
|  | Kulik.01.04 | 0.677 |  | 48.7 | 54 |
|  | American.00.01 | 0.987 |  | 33.7 | 54 |
|  | Idavain.00.06 | 0.003 | ** | 87.5 | 54 |
|  | Kejulik.00.01 | 0.702 |  | 48.1 | 54 |
| Alaska Peninsula |  |  |  |  |  |
| Between Pops |  | 0.000 |  | 2656.0 | 216 |
| Within Pops |  | 0.001 |  | 345.7 | 270 |
|  | Sandy.00.07 | 0.189 |  | 63.0 | 54 |
|  | Hoodoo.05.01 | 0.637 |  | 49.8 | 54 |
|  | Chiaktuak.08.97 | 0.739 |  | 47.0 | 54 |

WASSIP Technical Document 2: Temporal variation in baselines

| Region | Populations | p-value |  | G | DF |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | WestFork.08.97 | 0.000 | ** | 135.8 | 54 |
|  | Clark.08.97 | 0.624 |  | 50.1 | 54 |
| Western GOA |  |  |  |  |  |
| Between Pops |  | 0.000 | ** | 38420.0 | 1188 |
| Within Pops |  | 0.000 | ** | 1581.9 | 1242 |
|  | Ayakulik.00.08 | 0.106 |  | 67.3 | 54 |
|  | Saltery.94.99 | 0.227 |  | 61.5 | 54 |
|  | Chilligan.92.94 | 0.970 |  | 36.2 | 54 |
|  | LoneKing. 06.08 | 0.111 |  | 66.9 | 54 |
|  | Packers.92.93 | 0.775 |  | 45.9 | 54 |
|  | Judd.06.93 | 0.385 |  | 56.4 | 54 |
|  | Shell.06.93 | 0.075 |  | 69.6 | 54 |
|  | Hewitt.06.92 | 0.000 | ** | 132.9 | 54 |
|  | WestYentna.92.93 | 0.556 |  | 51.9 | 54 |
|  | Chelatna.06.93 | 0.376 |  | 56.7 | 54 |
|  | Swan.06.07 | 0.789 |  | 45.5 | 54 |
|  | Byers.07.93 | 0.263 |  | 60.1 | 54 |
|  | Spink.07.08 | 0.177 |  | 63.5 | 54 |
|  | Stephan.07.93 | 0.022 |  | 76.8 | 54 |
|  | Larson.06.93 | 0.000 | ** | 108.4 | 54 |
|  | Birch.07.93 | 0.000 | ** | 155.8 | 54 |
|  | FishCr.94.93.92 | 0.009 | ** | 145.5 | 108 |
|  | Williwaw.06.07 | 0.519 |  | 52.9 | 54 |
|  | Moose.94.93 | 0.787 |  | 45.5 | 54 |
|  | Ptarmigan. 92.93 | 0.650 |  | 49.5 | 54 |
|  | Tern. 92.93 | 0.401 |  | 56.0 | 54 |
|  | Skilak.95.92 | 0.020 | * | 77.3 | 54 |
| Eastern GOA |  |  |  |  |  |
| Between Pops |  | 0.000 | ** | 13060.0 | 432 |
| Within Pops |  | 0.052 |  | 651.0 | 594 |
|  | Eshamy.08.91 | 0.763 |  | 46.3 | 54 |
|  | Windfall.03.07 | 0.210 |  | 62.1 | 54 |
|  | Nahlin.03.07 | 0.078 |  | 69.3 | 54 |
|  | Tatsamenie.92.05 | 0.000 | ** | 108.8 | 54 |
|  | Iskut.02.85 | 0.266 |  | 60.1 | 54 |
|  | McDonald.07.03.01 | 0.063 |  | 131.3 | 108 |
|  | Heckman.04.07 | 0.813 |  | 44.7 | 54 |
|  | RedBay.04.92 | 0.774 |  | 45.9 | 54 |
|  | Sweetwater.07.03 | 0.757 |  | 46.5 | 54 |
|  | Meziadin.06.01 | 0.972 |  | 36.0 | 54 |
| Total |  |  |  |  |  |
| Between Pops |  | 0.000 | ** | 70960.0 | 3024 |
| Within Pops |  | 0.000 | ** | 4336.2 | 3510 |
| Between Regions |  | 0.000 | ** | 31184.0 | 270 |
| Overall |  | 0.000 | ** | 106480.2 | 6804 |

WASSIP Technical Document 2: Temporal variation in baselines

293 Table 3. Collections of chum salmon sampled from the same location at approximately the same time in the calendar year but in multiple years organized by region used to examine within-population and among population genetic variability. Sample year and sample sizes are provided.

| Region Population | Collection | Year | N |
| :---: | :---: | :---: | :---: |
| Japan |  |  |  |
| Tokachi River | Tokachi River | 2002 | 79 |
|  | Tokachi River | 1990 | 80 |
| Russia |  |  |  |
| Amur River | Amur River - summer | 1997 | 60 |
|  | Amur River - summer | 2001 | 99 |
| Anadyr River | Anadyr River - early | 2000 | 28 |
|  | Anadyr River - early | 1993 | 31 |
| Kamchatka | Kamchatka - early | 2003 | 50 |
|  | Kamchatka - early | 1990 | 50 |
| Kotzebue Sound |  |  |  |
| Kobuk River | Kobuk River | 2005 | 95 |
|  | Kobuk - Salmon River | 1991 | 95 |
| Norton Sound |  |  |  |
| Pilgrim River | Pilgrim River | 1994 | 90 |
|  | Pilgrim River | 2005 | 94 |
| Snake River | Snake River | 1993 | 35 |
|  | Snake River | 1995 | 58 |
|  | Snake River | 2005 | 95 |
| Unalakleet River | Unalakleet River | 1992 | 48 |
|  | Unalakleet River | 2004 | 95 |
| Yukon Alaska Early |  |  |  |
| Andreafsky River | East Fork Andreafsky River | 1993 | 95 |
|  | Andreafsky River - East Fork weir | 2004 | 94 |
| Yukon Alaska Late/Mid |  |  |  |
| Delta River | Delta River | 1992 | 95 |
|  | Delta River | 1994 | 95 |
| Yukon Canada |  |  |  |
| Kluane River | Kluane River | 2001 | 93 |

WASSIP Technical Document 2: Temporal variation in baselines

| Region | Population | Collection | Year | N |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Kluane River | 2007 | 33 |
| Kuskokwim |  |  |  |  |
|  | Goodnews River | Goodnews River - North Fork | 2006 | 46 |
|  |  | Goodnews Weir | 1991 | 100 |
|  | Holokuk River | Holokuk River | 1995 | 48 |
|  |  | Holokuk River | 2007 | 62 |
|  | Kogrukluk River | Kogrukluk River | 1992 | 44 |
|  |  | Kogrukluk River | 1993 | 50 |
|  | Kwethluk River | Kwethluk River | 2007 | 198 |
|  |  | Kwethluk River | 1994 | 96 |
|  | George River | George River | 1996 | 95 |
|  |  | George River | 2007 | 289 |
| Bristol Bay |  |  |  |  |
|  | Stuyahok River | Stuyahok River | 1992 | 31 |
|  |  | Stuyahok River | 1993 | 56 |
| Cook Inlet West |  |  |  |  |
|  | McNeil River | McNeil River Lagoon | 1994 | 60 |
|  |  | McNeil River | 1996 | 49 |
| Northern SE Alaska |  |  |  |  |
|  | Long Bay | Long Bay | 1991 | 66 |
|  |  | Long Bay | 1992 | 95 |
| Washington/Idaho |  |  |  |  |
|  | Big Mission Creek | Big Mission Creek - fall |  | 47 |
|  |  | Big Mission Creek - fall | 2002 | 47 |
|  | Hamma Hamma River | Hamma Hamma River - summer | 2001 | 47 |
|  |  | Hamma Hamma River - summer | 2003 | 48 |
|  | Jimmy Creek | Jimmy Creek - summer | 2000 | 46 |
|  |  | Jimmy Creek - summer | 2001 | 49 |
|  | Lilliwaup River - fall | Lilliwaup River - fall | 2005 | 45 |
|  |  | Lilliwaup River - fall | 2006 | 48 |
|  | Lilliwaup River - summer | Lilliwaup River - summer | 2002 | 43 |
|  |  | Lilliwaup River - summer | 2001 | 48 |

WASSIP Technical Document 2: Temporal variation in baselines

| Region | Population | Collection | Year | N |
| :--- | :--- | :--- | ---: | ---: |
|  | North Creek | North Creek - fall | 1994 | 47 |
|  |  | North Creek - fall | 1998 | 48 |
|  | Union River | Union River - summer | 2004 | 42 |
|  |  | Union River - summer | 2003 | 53 |

296
297

WASSIP Technical Document 2: Temporal variation in baselines

Table 4. Hierarchical test for temporal variation in chum salmon using the log-likelihood ratio test of population homogeneity based on 52 SNP loci. Comparisons are limited to populations where samples from multiple brood years exist in the current coast-wide SNP baseline. Collections years are incorporated at the end of the population names.

| Region | Populations | p-value |  | G | DF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Japan |  |  |  |  |  |
|  | Tokachi. 90.02 | 0.134 |  | 65.6 | 54 |
| Russia |  |  |  |  |  |
|  | Between pops | 0.000 | ** | 1272.0 | 108 |
|  | Within pops | 0.000 | ** | 233.8 | 162 |
|  | Amur.97.01 | 0.000 | ** | 194.3 | 54 |
|  | Anadyr. 93.00 | 0.985 |  | 33.9 | 54 |
|  | Kamchatka.90.03 | 1.000 |  | 5.6 | 54 |
| Kotzebue Sound |  |  |  |  |  |
|  | Kobuk.91.05 | 0.307 |  | 58.7 | 54 |
| Norton Sound |  |  |  |  |  |
|  | Between pops | 0.002 | * | 154.2 | 108 |
|  | Within pops | 0.000 | ** | 341.5 | 216 |
|  | Pilgrim.94.05 | 0.429 |  | 55.2 | 54 |
|  | Snake.93.95.05 | 0.000 | ** | 215.6 | 108 |
|  | Unalakleet.92.04 | 0.063 |  | 70.7 | 54 |
| Yukon Alaska, early |  |  |  |  |  |
|  | Andreafsky.93.04 | 0.441 |  | 54.9 | 54 |
| Yukon Alaska, late |  |  |  |  |  |
|  | Delta.92.94 | 0.908 |  | 40.8 | 54 |
| Yukon Canada |  |  |  |  |  |
|  | Kluane.01.07 | 0.788 |  | 45.5 | 54 |
| Kuskokwim |  |  |  |  |  |
|  | Between pops | 0.000 | ** | 305.9 | 216 |
|  | Within pops | 0.137 |  | 295.6 | 270 |
|  | Goodnews.91.06 | 0.232 |  | 61.3 | 54 |
|  | Holokuk.95.07 | 0.260 |  | 60.3 | 54 |
|  | Kogrukluk.92.93 | 0.929 |  | 39.6 | 54 |
|  | Kwethluk.94.07 | 0.226 |  | 61.5 | 54 |
|  | George.96.07 | 0.044 |  | 73.0 | 54 |
| Bristol Bay |  |  |  |  |  |
|  | Stuyahok.92.93 | 0.175 |  | 63.6 | 54 |
| Cook Inlet, west |  |  |  |  |  |
|  | McNeil.94.96 | 0.266 |  | 60.1 | 54 |
| Northern Southeast |  |  |  |  |  |
|  | LongBay. 91.92 | 0.318 |  | 58.4 | 54 |

WASSIP Technical Document 2: Temporal variation in baselines


WASSIP Technical Document 2: Temporal variation in baselines


Figure 1. Color-coded pair-wise $F_{S T}$ plots for the inter-annual baseline collections for sockeye salmon. Darker colors indicate higher differences among collections. The diagonal line is white because pair-wise $F_{S T}$ values between the collection and itself is zero. Cells close to the diagonal represent pair-wise $F_{S T}$ values among collections taken in different years for the same population.

WASSIP Technical Document 2: Temporal variation in baselines


Figure 2. Unweighted pair-group method (UPGMA) tree of pair-wise $F_{S T}$ values for sockeye salmon populations that are represented by two or more collections taken in different years. Generally, collections taken over different years at the same location pair together.


Figure 3. Color-coded pair-wise $F_{S T}$ plots for the inter-annual baseline collections for chum salmon. Darker colors indicate higher differences among collections. The diagonal line is white because pair-wise $F_{S T}$ values between the collection and itself is zero. Cells close to the diagonal represent pair-wise $F_{S T}$ values among collections taken in different years for the same population. The large white patch in the lower, left-hand side of the figure shows the lack of variation among the Western Alaska populations and the smaller white patch in the upper, righthand side show similar lack of variation among populations within Washington.

WASSIP Technical Document 2: Temporal variation in baselines


Figure 4. Unweighted pair-group method (UPGMA) tree of pair-wise $F_{S T}$ values for chum salmon populations that are represented by two or more collections taken in different years. Generally, collections taken over different years at the same location pair together except in the areas highlighted in green which include Western Alaska and Washington/Idaho.


[^0]:    ${ }^{1}$ This document serves as a record of communication between the Alaska Department of Fish and Game Commercial Fisheries Division and the Western Alaska Salmon Stock Identification Program Technical Committee. As such, these documents serve diverse ad hoc information purposes and may contain basic, uninterpreted data. The contents of this document have not been subjected to review and should not be cited or distributed without the permission of the authors or the Commercial Fisheries Division.

